952. Steroid Hormones. Part XV. ${ }^{1}$ (\pm)-8 α-Androst-4-ene-3,17-dione from 8α-CEstrone Methyl Ether

By A. J. Birch and G. S. R. Subba Rao

The addition of dibromocarbene to a $\mathbf{5}(\mathbf{1 0)}$-double bond in a hydro-œstrone derivative has led to a new total synthesis of non-aromatic steroids. ${ }^{2}$ To test whether the method is applicable to any other stereoisomers, the reaction was applied to derivatives of 8α-œstrone. Addition of the carbene completely failed to occur. At this stage we were informed by Dr. A. D. Cross and Dr. R. Ginsig (Syntex, S.A., Palo Alto) of a successful experimental modification of the Simmons-Smith ${ }^{3}$ methylene-addition process for difficult cases. This reaction has the great advantage of being sterically directed by an allylic or homoallylic hydroxyl group. The 8α-stereoisomers of œstrone methyl ether and œstradiol methyl ether, kindly presented by Dr. Herchel Smith (Wyeth Laboratories), were converted into compounds ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}=\mathrm{OH}$) and ($\mathrm{I} ; \mathrm{R}, \mathrm{R}^{\prime}=\mathrm{O}\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{O}$) by obvious methods. Acid hydrolysis under appropriate conditions gave compounds (II; $\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}=\mathrm{OH}$)

(I)

(II) ; $X=0$
(III) ; $\mathrm{X}=\mathrm{H} \cdots, \mathrm{HO}=$

(IV)

(V)
or (II; R, $\mathrm{R}^{\prime}=\mathrm{O} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{O}$), reduced by sodium borohydride to compounds (III; $\mathrm{R}^{\prime}=\mathrm{H}$, $\mathrm{R}=\mathrm{OH}$) or (III; $\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{O} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{O}$). The configuration of the $3 \beta-\mathrm{OH}$ is assigned as the result of the next step. Reaction of these compounds with methylene iodide and zinc under the Syntex reaction conditions caused addition of methylene to the $5(10)$ double bond. Removal of the ketal group in the one case, followed by oxidation, and direct oxidation in the other, gave the diketone (IV), which on reaction with acid gave (\pm)-8 α -androst-4-ene-3,17-dione (V). This compound, although optically inactive, was compared with $(+)-8 \alpha$-androst-4-ene-3,17-dione (kindly supplied by Professor Djerassi), the m. p. of which it did not depress. It was identical in infrared spectrum by comparison with the published ${ }^{4}$ spectrum. The amount of natural material was too small to make further comparisons.

Experimental.-(土)-8 - CEstr-5(10)-ene-3,17-dione 17-ethylene ketal. (\pm)-3-Methoxy-8 α -œstra-1,3,5(10)-trien-17-one, kindly given by Dr. Herchel Smith (Wyeth Laboratories), was converted into the 17 -ethylene ketal, m. p. 106- 108°, and thence into (\pm)-3-methoxy- $8 \alpha-$ œstra-2,5(10)-dien-17-one 17 -ethylene ketal, m. p. $134-135^{\circ}$ by the usual methods, to be described by Dr. Smith.

To the latter ketal (1 g .), in tetrahydrofuran-methanol ($1: 1 ; 20$ c.c.), was added oxalic acid (1.5 g .) in water (10 c.c.). After 1 hr . a saturated solution of sodium hydrogen carbonate was added to until the solution was neutral, and the product extracted with ether. Crystallisation from methanol gave (\pm)-8 α-cestr-5(10)-ene-3,17-dione 17 -ethylene ketal as needles (850 mg .), m. p. 119-120 $0^{\circ} \mathrm{v}_{\text {max. }} 1700,1603$, and $1100 \mathrm{~cm} .^{-1}$ (Nujol) (Found: C, 75.4; H, 8.4. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$ requires C, $\mathbf{7 5 . 9}$; H, 8.8%).
(\pm)-5(10)-Methylene-8 α-astra-3,17-dione. (a) Sodium borohydride (0.5 g .) and the above ketone (0.5 g .) in methanol (20 c.c.) were left overnight. Addition of water and ether extraction,

[^0]followed by crystallisation from methanol gave (\pm)-3 β-hydroxy-8 α-œestr-5(10)-en-17-one 17-ethylene ketal (480 mg .) (Found: C, $75 \cdot 1 ; \mathrm{H}, 9 \cdot 65 . \quad \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 4 ; \mathrm{H}, 9 \cdot 4 \%$).

This carbinol (400 mg .), and reagent from zinc-copper couple (2 g .), and methylene iodide (0.5 c.c.) were heated in a sealed tube at 100° for 1 hr . The product was extracted with chloroform and the resulting gum oxidised with 8 N -chromic acid. After passage of the product through alumina (土)-5(10)-methylene-8 α-œestra-3,17-dione (35 mg .) was obtained and crystallised from hexane; it had m. p. $150-154^{\circ} \nu_{\text {max }}\left(\mathrm{CS}_{2}\right) 1715,1240,1110,1065,1038,930,820$, and $750 \mathrm{~cm} .^{-1}$; $\tau 9.08\left(18-\mathrm{CH}_{3}, 9.52\left(-\mathrm{CH}_{2}-\right)\right.$ (Found: C, $80.0 ; \mathrm{H}, 9.2 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 79 \cdot 7 ; \mathrm{H}, 9 \cdot 1 \%$) (b) $(\pm)-8 \alpha$-œstra-diol methyl ether (2 g.), kindly given by Dr. Herchel Smith, was converted by lithium-ammonia reduction into its 1,4 -dihydro-derivative, m. p. 135- 136°, in a manner to be described in detail by Dr. Smith. This compound was hydrolysed with oxalic acid as above to give (土)-17 β-hydroxy-8 α-œstr-5(10)-en-3-one (1.12 g .) m. p. 148 - 150° (from methanol); $\nu_{\text {max }}$ 3300 , 1695, and $1603 \mathrm{~cm} .^{-1}$ (Found: $\mathrm{C}, 78 \cdot 4 ; \mathrm{H}, 9 \cdot 7 . \quad \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 78 \cdot 8 ; \mathrm{H}, 9.5 \%$).

This ketone (1 g .) in methanol ($30 \mathrm{c} . \mathrm{c}$.) was allowed to react overnight with sodium borohydride (500 mg .). The product was a glass (920 mg .), which crystallised from methanol as plates (560 mg .), m. p. $130-132^{\circ}$, $\nu_{\max } 3250 \mathrm{~cm} .^{-1}$, of (\pm)-8 $\alpha-$-estr- $5(10)$-ene- $3 \beta, 17 \beta$-diol (Found: $\mathrm{C}, 77.75 ; \mathrm{H}, 10.5 . \quad \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.3 ; \mathrm{H}, 10.2 \%$).

The diol (500 mg .), zinc-copper couple (2.5 g .), and methylene iodide (0.5 g .) were heated in a sealed tube at 100° for 1 hr . The product was worked up and converted as above into the diketone, which was obtained (60 mg .) as crystals m. p. $150-154^{\circ}$, from hexane.
$(\pm)-8 \alpha-A n d r o s t-5-e n e-3,17-d i o n e . ~ A ~ s o l u t i o n ~ o f ~ t h e ~ a b o v e ~ d i k e t o n e ~(~ 50 ~ m g) ~ i n ~ d r y ~ c h l o r o-$. form (5 c.c.) was saturated with dry hydrogen chloride and left overnight. The product was diluted with ether, and washed with hydrogen carbonate solution, and chromatographed on neutral alumina. The (\pm)- 8α-androst-5-ene- 3,17 -dione (25 mg .), crystallised from methanol as prisms, m. p. $196-197^{\circ}$, $\lambda_{\text {max. }} 241 \mathrm{~m} \mu(\log \varepsilon 4 \cdot 25) ; \nu_{\max } 1740,1668$, and $1608 \mathrm{~cm} .{ }^{-1}$ (Nujol) (Found: C, 79.2; $\mathrm{H}, 9.3 . \quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 79 \cdot 7 ; \mathrm{H}, 9.1 \%$). On admixture with an authentic $(+)$-specimen of this substance, m. p. $195-197^{\circ}$, the m. p. was undepressed.

We are indebted to Syntex, S.A. for financial assistance, and to Dr. Herchel Smith and Professor Carl Djerassi for specimens.

Department of Chemistry, University of Manchester.
[Received, March 3rd, 1965.]

[^0]: ${ }^{1}$ Part XIV, A. J. Birch, J. M. H. Graves, and G. S. R. Subba Rao, preceding Paper.
 ${ }^{2}$ A. J. Birch, J. M. Brown, and G. S. R. Subba Rao, J., 1964, 3309.
 ${ }^{3}$ H. E. Simmons and R. D. Smith, J. Amer. Chem. Soc., 1959, 81, 4256.
 ${ }^{4}$ C. Djerassi, A. J. Manson, and H. Bendas, Tetrahedron, 1957, 1, 22.

